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ON THE EXISTENCE OF SOLUTIONS OF THE COMPOSITE TYPE
THIRD ORDER EQUATION IN AN UNLIMITED DOMAIN

A.R. KHASHIMOV1

Abstract. In the paper the first boundary problems for the third order equations of composite
type is considered. Theorems of existence are proved in the classes of growing functions at
infinity.
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1. Introduction

The Saint-Venant’s principle (see [4], [13]) is expressed in the planar theory of elasticity as a
priory estimate for a solution of a biharmonic equation satisfying homogeneous boundary con-
ditions of the first boundary value problem in the part of the domain boundary. Such energetic
estimates were obtained first in [1], [6]. These estimates do not take into account character of
transformation of the body form at moving off from those parts of the bound where exterior
forces are applied. In [10], another proof of the Saint-Venant’s principle in the planar theory of
elasticity was given. The energetic estimate obtained in this connection considered character of
transformation of the body form. As a corollary of this estimate, the uniqueness theorem for
the first boundary value problem of the planar theory of elasticity in unlimited domains and
also Pharagmen-Lindelof type theorems were obtained. Some Pharagmen-Lindelff type theo-
rems were proved for equations of the theory of elasticity in [15] and for elliptic equations of
higher order in [2], [3], [8]. The Saint-Venant’s principle for a cylindrical body was proved in
[14]. An analog of the Saint-Venant’s principle, uniqueness theorems in unlimited domains, and
Pharagmen-Lindelff type theorems were obtained for the system of equations of the theory of
elasticity in [9], [11] in the case of space with boundary conditions of the first boundary value
problem. For the mixed problems similar results were derived in [12].

In the all above mentioned references method a was given for investigation in the case of even
order equations. But in the case of odd order, particularly for the third order equations the
methods are in the stage of development. This fact may be explained with non-symmetry of
boundary conditions.

In [7] a method was given for constructing of weak solutions of boundary value problems for
composite type third order equations in bounded domains. Further in the work [5] we proved
uniqueness theorems in classes of functions increasing in infinity depending on the geometric
characteristics of the domain.

In the present paper is presented the method of solution of first boundary value problem for
the third order composite type equation. The method used in the present paper is applicable
for the Korteveg - de Vriese equations with any number of variables and for the composite type
equations of any odd order.
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2. Notations and formulation of the problem

The purpose of present paper is the investigation of the existence question of the generalized
solution of the equation

lAu + Bu = f(x), (1)
u|σ0

⋃
σ1

⋃
σ2

= 0, l0u|σ1 = 0, (2)
in the unbounded domain Ω ⊂ Rn

+ = {x : x1 > 0}, where

Au = aij(x)uxixj + ai(x)uxi + a(x)u,

Bu = bij(x)uxixj + bi(x)uxi + b(x)u,

lu = l0u + α(x)u, l0u = αk(x)uxk
,

σ0 = {x ∈ Γ : αk(x)νk(x) = 0}, σ1 = {x ∈ Γ : αk(x)νk(x) > 0},
σ2 = {x ∈ Γ : αk(x)νk(x) < 0},

Γ = ∂Ω, ν(x) = (ν1(x), ν2(x), ..., νn(x))-unit vector of the interior normal to Γ in the point
x.

Here and later we suppose that the summation is done on repeating indices from 1 to n.
Note that in the case of limited domains the existence question for the generalized solution

of the problem (1), (2) is investigated in [7].
Assume that the hyper-surface Γ is represented as xj = χ(x1,x2, ..., xj−1, xj+1, ..., xn), at any

it’s point for some χ, belonging to the class C2.
Suppose that all coefficients in (1) and their derivatives which occur below are bounded and

measured in any finite sub-domain of the domain Ω.
We will mean everywhere that

aij = aji, a0 |ξ|2 ≤ aijξiξj ≤ a1 |ξ|2 , cij = cji,

c0 |ξ|2 ≤ cijξiξj ≤ c1 |ξ|2 , d0 |ξ|2 ≤ dijξiξj ≤ d1 |ξ|2 ,

n∑

k=1

[
αk(x)

]2
6= 0, cij − αia− ci < 0, α1(x) 6= 0, qij = c− 1

2
ci
xi

+
1
2
cij
xixj

+
1
2
(αia)xi ≤ −q0 < 0,

at ∀x ∈ Ω ∪ Γ, ∀ξ ∈ Rn. Here a0, a1, d0, d1, c10, c11, c0 positive constants and

dij = cij − (αiakj)xk
+ αiaj +

1
2
(αkaij)xk

cij = bij + αaij − αk
xk

aij , ci = bi + αai − αk
xk

ai, c = b + αa− αk
xk

a.

Let {Ωτ}−be a family of limited subdomains of the domain Ω, depending on the parameter
τ ∈ Π = {τ : 0 ≤ τ ≤ τ0}, τ0 ≤ ∞ and Ωτ ⊂ Ωτ ′ , if τ < τ ′. Denote Sτ = ∂Ωτ\∂Ω. We will
assume that Sτ is (n − 1) dimensional surface possessing the same smoothness as ∂Ω and its
bound ∂Sτ ⊂ ∂Ω.

Suppose Γτ = Γ
⋂

∂Ωτ , σ0,τ = {x ∈ Γτ : αk(x)νk(x) = 0}, σ1,τ = {x ∈ Γτ : αk(x)νk(x) > 0},
σ2,τ = {x ∈ Γτ : αk(x)νk(x) < 0}.

Determine σ1,h,τ = {x ∈ σ1,τ : ρ(x, ∂σ1,τ ) > h}, σh
1,τ = σ1,τ\σ1,h,τ for h > 0.

Let E(Ωτ ) be a set of functions υ from the class C2(Ωτ ) such that υ = 0 at Γτ and l0υ = 0
for some h > 0 at σ0,τ

⋃
σ2,τ

⋃
σh

1,τ .
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Denote by H(Ωτ ) the completion E(Ωτ ) on the norm

||u||H(Ωτ ) =





∫

Ωτ

(dijuxiuxj + u2)dx +
∫

σ1,τ

αkνka
ijuxiuxjds





1
2

.

We shall consider the bilinear form

a(u, υ) =
∫

Ωτ

[αkaijuxiυxjxk
+ (αkaij)xjuxiυxk

− αkaiuxiυxk
− cijuxiυxj ]dx+

+
∫

σ1

[(cij
xj
− αia− ci)uυxi + (c− ci

xi
+ cij

xixj
)uυ]dx. (3)

Definition 2.1. The function u(x) is called a generalized solution of the problem (1), (2) in the
domain Ω if u(x) ∈ H(Ωτ ) for any finite subdomain Ωτ of the domain Ω and

a(u, υ) =
∫

Ωτ

fυdx (4)

for an arbitrary function υ(x) ∈ E(Ωτ ), υ = 0 in Sτ .

3. Main results

Now let αk = const k = 1, n, α1 > 0. Then it’s proved in [14] the acceptance of the second
condition from (2) as the generalized solution on the average.

Assume Sτ = Ω
⋂{x : x1 = τ + γ} for any 0 ≤ τ ≤ τ0, where γ = const > 0, for simplicity of

the exposition.
Introduce the following notations

Q(u) = dijuxjuxj − qiju2, g = a1d
− 1

2
0 (α1)2,

P (τ) = sup
Sτ

B(x), (5)

B(x) = {2−1(α1a1 + ci1 − (α1aij)xj ), 0}, (6)
Let

0 < λ(τ) ≤ inf
υ∈N





∫

Sτ

Q(υ)dx′

∣∣∣∣∣∣

∫

Sτ

υ2dx′

∣∣∣∣∣∣

−1
 , x′ = (x2, ..., xn). (7)

Here N is the set of functions υ(x) which are continuously differentiable on the neighborhood
Sτ as x ∈ Ω̄, and are equal to 0 in Sτ

⋂
Γ.

Let Φ(τ) be a positive function as τ ∈ Π, such that

Φ(τ) ≥ gλ−
1
2 (τ) + P (τ)λ−1(τ). (8)

Now using the properties of this function we define two types of domains.
A) The first class of domains is expanding domains which satisfies the following condition

dΦ(τ)
dτ

≥ ε, ∀τ ∈ Π, ε = const, 0 < ε < 1;

These domains are sited out of some cone at infinity. Here τ(β) is a solution of the equation
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dτ

dβ
=

Φ
ετ + Φτ

(9)

with initial condition τ(0) = 0.
B) The second class of domains is domains which satisfies the following condition

dΦ(τ)
dτ

≤ ε, ∀τ ∈ Π, ε = const, 0 < ε < 1;

These are domains inclined in some cone. Here τ(β) is a solution of the equation

dτ

dβ
=

Φ
ετ + ε

(10)

with initial condition τ(0) = 0.
In both cases the function Φ(τ) is such that the right parts of (9) and (10) will be absolutely

continuous.
Next theorem is proved in [5].

Theorem 3.1. (The analogue of the Saint-Venant’s principle). Let u(x) be a generalized solu-
tion of the problem (1), (2) from the class A) in the domain Ω, moreover

(α1aij)xi − (α1aij)xixj + 3cij
xixj

− 2c1 − 2αia ≥ 0 and f(x) = 0 inΩτ0 . (11)

Then the following estimation

∫

Ωτ(R0)

Q(u)dx ≤ exp




−ε

τ(R)∫

τ(R0)

s

Φ(s)
ds





∫

Ωτ(R)

Q(u)dx (12)

is valid for any R0 and R such that 0 ≤ R0 ≤ R.

Now we will prove theorems of existence for the problem (1), (2) in the unbounded domains.

Lemma 3.1. Suppose that there exists an unlimited sequence of finite subdomains ΩN of the
domain Ω from the class A) such that ΩN ⊂ ΩN+1 as N = 1, 2, ...; Ω =

⋃∞
i=1 Ωi. Let the

estimation
∫

ΩN

Q(ω)dx ≤ exp



−ε

N+1∫

N

sds

Φ(s)





∫

ΩN+1

Q(ω)dx. (13)

holds for every fixed N and for any function ω, which is the generalized solution of the equation
(1) in ΩN+1, as f ≡ 0, with boundary conditions (2) at Ω̄N+1 ∩ Γ. Let the function f(x) be
determined in Ω and its growth satisfies to the following condition

∫

ΩN

f2dx ≤ M1Λ (ΩN ) exp



(1− δ)

N∫

0

εs

Φ(s)
ds



 , N = 1, 2, ..., (14)

where δ = const, 0 < δ < 1, the constant M1 doesn’t depend on N ,

Λ(ΩN ) = inf
υ∈H(ΩN )





∫

ΩN

Q(υ)dx

∣∣∣∣∣∣∣

∫

ΩN

υ2dx

∣∣∣∣∣∣∣

−1


. (15)

Then there exists the unique generalized solution u(x) of the problem (1), (2) and the estima-
tion
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∫

ΩN

Q(ω)dx ≤ M2 exp



(1− δ)

N∫

0

εs

Φ(s)
ds



 , N = 1, 2, ..., (16)

is valid for u(x), where the constant M2 doesn’t depend on N .

Proof. Note that Λ(ΩN ) > 0. Denote by um
l (x) a sequence of functions from the class E(Ωl)

such that um
l (x) converges to ul(x) on the norm H(Ωl), as m →∞ and ul(x) is the generalized

solution of the problem (1), (2) in the domain Ωl (see [14]). Fix an arbitrary subdomain ΩN

from the sequence Ω1 ⊂ Ω2 ⊂ ... and consider the sequence of the subdomains ΩN+k, k →∞.
We have

∫

ΩN+k

Q(uN+k)dx = −
∫

ΩN+k

fuN+kdx.

Integrating (4) by parts for Ωτ = ΩN+k, u = uN+k, υ = um
N+k , and taking the limit as

m →∞.
Hence using the Cauchy-Bunyakowsky inequality we have

∫

ΩN+k

Q(uN+k)dx ≤




∫

ΩN+k

f2dx




1
2




∫

ΩN+k

u2
N+kdx




1
2

,

∫

ΩN+k

Q(uN+k)dx ≤ Λ−1(ΩN+k)
∫

ΩN+k

f2dx.

Taking into account (15) we obtain from the last inequality

∫

ΩN+k

E(uN+k)dx ≤ M∗
1 exp



(1− δ)

N+k∫

0

εs

Φ(s)
ds



 . (17)

Set

〈υ〉Ωl
=




∫

Ωl

Q(υ)dx




1
2

.

It is easy to see that the function ω = uN+k+1−uN+k is the generalized solution of the equation
(1) satisfying to the boundary condition (2) in the domain ΩN+k as f(x) = 0. So applying
estimation (14) to domains ΩN , ΩN+1, ..., ΩN+k, consecutively and taking into account the
inequality (18), we will find out that

〈uN+k+1 − uN+k〉ΩN
≤ M3 exp



−

δ

2

N+k∫

N

εs

Φ(s)
ds



 , (18)

where the constant M3 doesn’t depend from N and k.
It follows from the inequality (18)

〈uN+p+q − uN+p〉ΩN
≤ M4 exp



−

δ

2

N+p∫

N

εs

Φ(s)
ds



 , (19)
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for every integer numbers p > 0, q > 0 , where the constant M4 doesn’t depend from N, p
and q. Hence 〈uN+p+q − uN+p〉ΩN

→ 0 for any q > 0, p →∞.
For any bounded subset Ωτ of the domain Ω and for arbitrary set µ ⊂ ∂Ω′ we denote by

H1(Ωτ , µ) completion of E(Ωτ , µ) with respect to norm

||ω||H1(Ωτ , µ) =





∫

Ωτ

(dijωxiωxj + ω2)dx





1
2

.

Since H1(Ωτ , µ) is a Hilbert space and

‖uN+p − uN+p+q‖2
H1(ΩN ) ≤ M5 〈uN+p − uN+p+q〉2ΩN

,

where the constant M5 doesn’t depend on p, then the sequence {up} converges to the function
u(x) ∈ H1(ΩN , µ) as p →∞ in the norm H1(Ωτ , µ).

Since N > 0 is chosen arbitrary then u(x) is defined in Ω, and u(x) ∈ H1(Ω′), for any bounded
subdomain Ω′ of the domain Ω.

By virtue of known theorems of inclusion the trace of the function u(x) exists on ∂Ω′ ∩Γ and
the first condition from (2) holds in this set. The acceptance the second condition from (2) as
a generalized solution is proved in [14].

It is easy to see that uN+pm satisfies to the integral identity (4) for Ωτ = ΩN and any
υ ∈ E(ΩN ). Taking the limit as pm → ∞, we’ll get u(x) satisfies the integral identity (4) for
Ωτ = ΩN , and υ ∈ E(ΩN ). Since N > 0 is arbitrary then it follows that the integral identity
(4) is valid for any limited subdomain ΩN ⊂ Ω and arbitrary function υ ∈ E(ΩN ). So u(x) is a
generalized solution of the problem (1), (2) in the domain Ω.

Take p = 1 in (20). Let q tends to ∞. Using the estimation (18) we will find out

〈u〉ΩN
≤ k exp





1− δ

2

N∫

0

εs

Φ(s)
ds



 + 〈uN+1〉ΩN

≤

≤ k exp





1− δ

2

N∫

0

εs

Φ(s)
ds



 + k1 exp





1− δ

2

N+1∫

0

εs

Φ(s)
ds



 .

Now we will show that the solution u(x) of the problem (1), (2) satisfying to (17) is unique.
It follows from (14) that u(x) and υ are the generalized solutions of the problem (1), (2) for
which the estimation (17) holds in the domain Ω, then for any l > 0

∫

Ωl

Q(u− υ)dx ≤ exp



−

l+j∫

l

εs

Φ(s)
ds





∫

Ωl+j

Q(u− υ)dx ≤

≤ exp



−

l+j∫

l

εs

Φ(s)
ds








∫

Ωl+j

E(u)dx +
∫

Ωl+j

E(υ)dx


 ≤

≤ exp



−

l+j∫

l

εs

Φ(s)
ds






M5 exp



(1− δ)

l+j∫

0

εs

Φ(s)
ds



 + M∗

5 exp



(1− δ)

l+j∫

0

εs

Φ(s)
ds






 ≤

≤ 2M ′
5 exp



−

l+j∫

l

εs

Φ(s)
ds



 exp



(1− δ)

l+j∫

0

εs

Φ(s)
ds



 ≤



A.R. KHASHIMOV: ON THE EXISTENCE OF SOLUTIONS... 35

≤ M6 exp



−δ

l+j∫

l

εs

Φ(s)
ds



 ,

where the constant M6 = max{M5,M
∗
5 } doesn’t depend from j. Taking the limit in the last

inequality as j → ∞, we will obtain that 〈u− υ〉Ωl
= 0 for any l > 0. Since Λ(Ωl) > 0, then

u− υ ≡ 0 in Ωl and so u = υ in Ωl.
One can see from the lemma that the existence of generalized solution of the problem (1), (2)

in Ω is based on the assumption that the relations (14) are realized.
Now we will show how one can construct the sequence of the domains {ΩN} for which these

relations are valid. Let {Ωτ} be a family of limited subdomains of the domain Ω and let all
conditions of theorem 3.1 hold. Then the estimation

∫

Ωτ(R0)

Q(u)dx ≤ exp




−

τ(R)∫

τ(R0)

εs

Φ(s)
ds





∫

Ωτ(R)

Q(u)dx (20)

takes place for any R0 and R such that 0 ≤ R0 ≤ R < R∗. ¤

The last inequality implies the rule of construction of the domains ΩN .
The following theorem of existence and uniqueness follows from Lemma 1 and the estimation

(21).

Theorem 3.2. Let Λ
(
Ωτ(k)

)
> 0 for every domain Ωτ(k) and let the function f(x) is defined in

Ω, satisfies the relations

Λ−1
(
Ωτ(k)

) ∫

Ωτ(k)

f2dx ≤ M7 exp





(1− δ)

τ(k)∫

0

εs

Φ(s)
ds





, k = 1, 2, ...,

where δ = const, 0 < δ < 1, the constant M7 doesn’t depend from k, τ(k) is the function defined
in (13). Then there exists the unique generalized solution u(x) of the problem (1), (2), for which
inequalities

∫

Ωτ(k)

Q(u)dx ≤ M8 exp





(1− δ)

τ(k)∫

0

εs

Φ(s)
ds





, k = 1, 2, ....

Proof. Let Ωj = Ωτ(j) in Lemma 1. Inequalities (14) follows from Theorem 3.1. Thus the
statement of the Theorem 3.2 follows from Lemma 1. ¤

The following theorem is valid for the domains from class B).

Theorem 3.3. (The analogue of the Saint-Venant’s principle). Let u(x) be a generalized solu-
tion of the problem (1), (2) from the class B) in the domain Ω, moreover condition (11) holds.
Then the following estimation

∫

Ωτ(R0)

Q(u)dx ≤ τ(R) + 1
τ(R0) + 1

exp[−(R−R0)]
∫

Ωτ(R)

Q(u)dx. (21)

are valid.
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Theorem 3.4. Let Λ
(
Ωτ(k)

)
> 0 for every domain Ωτ(k) and let the function f(x) be defined

in Ω, satisfies the relations

Λ−1
(
Ωτ(k)

) ∫

Ωτ(k)

f2dx ≤ M9 exp {(1− δ)k} , k = 1, 2, ...,

where δ = const, 0 < δ < 1, the constant M9 doesn’t depend from k, τ(k). Then there exists the
unique generalized solution u(x) of the problem (1), (2), for which inequality

∫

Ωτ(k)

Q(u)dx ≤ M10 exp(−(1− δ)k). (22)

is valid.

Proof of Theorem 3.4 is analogous to the proof of the Theorem 3.3.
Let αk(x)νk(x) ≤ 0 at Γ. Then the problem (1), (2) is turned into the Direchlet problem,

in this case the operator l0 has variable coefficients and the solution of the problem (1), (2)
u(x) ∈ W̃ 2

2 (Ωτ ) (see [14]). In just the same way as in the item I one can obtain the analogue
of the Saint-Venant’s principle for the solution and existence theorems in classes of function
growing in infinity which are proved similarly to the theorems 3.1, 3.2, 3.3 and 3.4.

Remark 3.1. Analogous results can be obtained when Sτ = Ω ∩ {|x| = τ + γ}.
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